

Available online at www.sciencedirect.com

journal of nuclear materials

Journal of Nuclear Materials 374 (2008) 192-196

www.elsevier.com/locate/jnucmat

Diffuse reflectance spectroscopy of tetravalent neptunium and plutonium ions in ThO₂

Yingjie Zhang *, Eric R. Vance

Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia

Received 8 May 2007; accepted 30 July 2007

Abstract

Near infrared (4000–12000 cm⁻¹) absorption spectra of Pu⁴⁺ and Np⁴⁺ dilutely incorporated in air-fired polycrystalline ThO₂ were collected at ambient temperature and showed several well-defined absorption bands having widths of a few hundred cm⁻¹. These bands are ascribed to f–f single-ion electronic transitions and increase in intensity with Np and Pu concentration up to 0.03 formula units (f.u.). Reheating samples in H₂/N₂ atmosphere at 1400 °C did not produce obvious spectral change for Np-doped ThO₂ and therefore no evidence of the formation of Np³⁺. However, the spectral lines attributed to Pu⁴⁺ decreased by approximately a factor of six in intensity, which implies reduction of Pu⁴⁺ to Pu³⁺.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The first aqueous absorption spectrum of the tetravalent neptunium $[Np^{4+} (5f^3)]$ was obtained 50 years ago [1]. However, the optical spectroscopy of Np^{4+} in the solid state has been studied in only a few crystalline matrices [2]. Because of the high density of states (overlapping of the excited crystal-field levels as the photon energy increases) as a result of larger spin-orbit coupling combined with larger crystal-field interactions, compared to its lanthanide analogue Nd³⁺ (4f³), only the Stark components of the four lowest manifolds, ${}^{4}I_{9/2}$, ${}^{4}I_{11/2}$, ${}^{4}F_{3/2}$ and ${}^{4}I_{13/2}$, which are well-isolated, can be reasonably assigned and fitted for parametric analysis in condensed media [2]. Electronic spectra of Np⁴⁺ in D_{2d} symmetry, in ThSiO₄ [3], PbMoO₄ [4] and ZrSiO₄ [5] have been investigated. Also, optical data have been published for Np4+ in octahedral and cubic crystal fields, CsNpCl₆ [6], [(C₂H₅)₄N]₂-NpCl₆ [7], NpF₄ [8] and ThO₂ [9,10] where Np⁴⁺ ions occupy a site of inversion symmetry in each case. It has been argued for Np⁴⁺ in ThO₂ that a small distortion has

0022-3115/\$ - see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jnucmat.2007.07.020

lifted the inversion symmetry at the Np⁴⁺ site sufficiently to permit the observation of forced (zero-phonon) electric dipole transitions in the optical region [9]. However, recent work [10] has shown the vibronic character of the spectra (as expected if inversion symmetry has been maintained), in contradiction with the previous work [9], and also proposed the existence of Np³⁺ to explain absorption bands seen at around 7200 cm⁻¹. Note however if Np³⁺ was present, a spectrum similar to that of iso-electronic Pu⁴⁺ would be expected, contrary to observation.

Although the aqueous absorption spectrum of the tetravalent plutonium $[Pu^{4+} (5f^4)]$ was reported [11] at about the same time as its neptunium counterpart, the optical spectroscopy of Pu^{4+} in the solid state has been reported so far only in tetrafluoride [8] and ThSiO₄ matrices [3].

Crystalline Th⁴⁺ compounds have often been used to study optical spectroscopy of paramagnetic actinide ions [10], mainly because Th⁴⁺ has no 5f electron, making it possible to observe f–f electronic transitions of other actinide ions incorporated in solid solution. In addition, Th⁴⁺ has a similar ionic radius as other actinide ions so it can be substituted by other actinide ions without much site distortion [11], especially if the substituted actinide ion is tetravalent.

^{*} Corresponding author. Tel.: +61 2 9717 9156; fax: +61 2 9543 7179. *E-mail address:* yzx@ansto.gov.au (Y. Zhang).

In the literature, little theoretical modelling of Np⁴⁺ and Pu⁴⁺ spectra in the condensed phase with well-defined symmetry character has been attempted [12]. The complexity of Np⁴⁺ and Pu⁴⁺ spectra arising from transitions within partly filled 5f shells is mainly due to the fact that there is a large number of free-ion states which lie close to one another and which are further split by crystal fields which have the same order of magnitude as the inter-electronic repulsion and the spin-orbit coupling [13]. In addition, different splitting patterns and transition intensities arising from different site-symmetries and selection rules are probably only detectable for zero-phonon transitions in low temperature spectra.

The ThO₂ structure is isomorphic to CaF₂ with O_h space group symmetry and the Th ion sits at the centre of an eightfold cube with inversion symmetry [9]. Recently we have studied uranium valences in ThO₂ sintered under different atmospheres [14]. It is of interest for both advanced nuclear fuels and high-level radioactive waste forms to understand Np and Pu valences in oxides, noting that the actinide valence depends on crystal-chemical forces as well as the oxygen fugacity. For these purposes, in the current work we have used diffuse reflectance spectroscopy to study f–f electronic transitions of Np and Pu ions in ThO₂ to assist in evaluating the valence of Np and Pu in other oxide ceramic fuels.

2. Experimental

 $(Np/Pu)_x Th_{1-x}O_2$. samples were made by the standard oxide/nitrate route (from mixtures of fine ThO₂ powder and Np/Pu nitrate solutions), followed by stir-drying, calcination in air for 1 h at 750 °C, wet-milling using zirconia balls, pelletising, and firing for 16 h at 1500 °C in air. Samples were mostly dilute in Np/Pu with *x* ranging from 0.001 to 0.1 to promote single-ion spectral behaviour. End member NpO₂ and PuO₂ samples were also prepared. Some samples were reheated in 3% H₂/N₂ at 1400 °C for 16 h to see whether trivalent Np/Pu ions can be stabilised in ThO₂ as proposed by previous workers [10] who studied Np-doped ThO₂ single crystals.

A Philips diffractometer was used for X-ray diffraction, employing Cu K α radiation. All samples fired in air or 3% H₂/N₂ showed only fluorite-type X-ray reflections. Scanning electron microscopy (SEM) on polished surfaces of samples was carried out on a JEOL 6400 machine run at 15 kV and fitted with a Tracor Northern TN5502 energydispersive spectrometer (EDS) which utilised a comprehensive range of standards for quantitative work. SEM showed all samples to be single phase and somewhat porous (see Fig. 1).

Pellet surfaces were coarsely polished using SiC paper up to $9.5 \,\mu\text{m}$ finish to assist diffuse reflectance. Diffuse reflectance (DR) spectra were collected on pellets at ambient temperature using a Cary 500 spectrophotometer equipped with a Labsphere Biconical Accessory. Spectra are referenced to that of a Labsphere certified standard

Fig. 1. SEM backscattered micrograph of the polished $Pu_{0.1}Th_{0.9}O_2$ sample shows it is single phase but porous. The white patches in the pores are due to electron reflection and are not impurity phases. Micrographs of the other samples were similar.

Fig. 2. DR spectra (4000–12000 cm⁻¹) of Np_xTh_{1-x}O₂ (x = 0.01, 0.03 and 0.1) samples sintered in air at 1500 °C.

(Spectralon), and transformed into Kubelka–Munk units, $F(R) = (1-R)^2/2R$ [15].

3. Results

3.1. Absorption spectra of Np^{4+} in ThO_2

DR spectra in the near infrared range for Np contents up to 0.1 f.u. in ThO₂ are shown in Fig. 2. It is well accepted that Np is tetravalent in $Np_xTh_{1-x}O_2$ samples sintered in air. Therefore f-f transitions of Np^{4+} in the eightfold cubic environment are presumably responsible for the absorption bands having widths of a few hundred cm^{-1} . There are no doubt further broader vibronic contributions to the absorption, especially since the dilutely substituted Np^{4+} ions would be expected to have inversion symmetry. Our spectra at room temperature agree broadly with those in Ref. [10], although ours are broader due to the higher sample temperature. Apart from absorption bands at around 7200 cm^{-1} (see above), most absorption bands are fairly consistent with those reported in single crystals of Np^{4+} :ThO₂ [9,10], with different groups of bands corresponding to J states ${}^{4}I_{11/2}$ at \sim 5600 cm⁻¹, ${}^{4}F_{3/2}$ at \sim 8700 cm⁻¹, ${}^{4}I_{13/2}$ at \sim 9900 cm⁻¹ and ${}^{4}F_{5/2}$ at \sim 11000 cm⁻¹. Ref. [9] assigned all observed transition bands (other than the band at 7200 cm^{-1}) to well-defined spin-orbit groups. However, it

did not show any of the measured spectra. Although Ref. [10] anticipated the existence of Np^{3+} in ThO₂ due to the additional bands observed at around 7200 cm⁻¹, we provide an alternative possible explanation below (and see above).

There is no evidence of additional peaks with increasing Np up to 0.1 f.u. and in general, most absorption peaks increase in intensity with increase of Np content up to 0.1 f.u. as expected by Kubelka–Munk theory [15]. The DR spectrum for NpO₂ sintered in air at 1500 °C is shown in Fig. 3. As for UO₂ [14] in which most of the single-ion f–f electronic transitions of U⁴⁺ are hardly detectable due to collective excitonic phenomena [16], single-ion f–f electronic transitions in NpO₂ were not detectable.

To bear on the question of possible presence of Np³⁺ in ThO₂ (see above), a sample with 0.1 f.u. of Np in ThO₂ was reheated in 3% H₂/N₂ at 1400 °C for 16 h to try to reduce Np⁴⁺ to Np³⁺ and the DR spectrum is shown in Fig. 4 compared to the one before reheating. The sample remained dark brown in color in both oxidised and reduced conditions. The reduction process made no obvious change to the broad absorption bands around 7200 cm⁻¹ and did not increase absorption at around 4000 cm⁻¹ (⁵I₅), suggesting that the broad absorption bands at around 7200 cm⁻¹ are most likely to be the result from vibronic contributions from Np⁴⁺ [17] rather than from Np³⁺ (⁵I₆) as proposed by

Fig. 3. DR spectra (4000–12000 cm⁻¹) of (a) NpO₂ and (b) PuO₂ (dilutely incorporated in TiO₂ powder) sintered in air at 1500 °C (spectra offset vertically to enhance visibility).

Fig. 4. DR spectra ($4000-12000 \text{ cm}^{-1}$) of Np_{0.1}Th_{0.9}O₂ samples (a) reheated in 3% H₂/N₂ at 1400 °C for 16 h, (b) sintered in air (spectra offset vertically to enhance visibility).

other workers [10]. This means that it is an oversimplification to assign the spectra simply to lines of well-defined spin-orbit groups, and that mixing of the various basis states needs to be factored into any rigorous parametric analysis.

3.2. Absorption spectra of Pu in ThO_2

DR spectra, in the near infrared range, for Pu contents up to 0.1 f.u. in ThO₂ are shown in Fig. 5. It would be expected that substitutional Pu in air-fired ThO₂ would be tetravalent [18]. Therefore, the spectra in Fig. 5 are attributable to f–f electronic transitions of tetravalent Pu ions in ThO₂. Most of the absorption peaks increased with increase of Pu content up to 0.03 f.u. (i.e. Kubelka–Munk theory is roughly valid) and remained relatively constant with Pu contents from 0.03 to 0.1 f.u. Like UO₂ [14] and NpO₂ (see above), the DR spectrum of PuO₂ (shown in Fig. 3, note the PuO₂ sample is diluted into TiO₂ which has a strong background absorption dependence on photon energy) has no detectable f–f electronic transitions in the near-infrared range due to the loss of single-ion behaviour [16].

A sample containing 0.03 f.u. of Pu was reheated in 3% H₂/N₂ at 1400 °C for 16 h and the DR spectrum in the

were umbers / cm⁻¹

Fig. 5. DR spectra (4000–12000 cm⁻¹) of $Pu_xTh_{1-x}O_2$ (x = 0.001 to 0.1) samples sintered in air at 1500 °C (spectra offset vertically to enhance visibility).

near-infrared range is shown in Fig. 6, together with the one without reheating. The sample changed in color from light brownish to dark brown after reheating in the reducing atmosphere. The reduced sample gives a very similar spectrum except for a slightly elevated absorption at \sim 4500 cm⁻¹ and overall weaker absorption intensities (4– 8 times weaker). A few oxidation-reduction cycles confirmed that the observed phenomena are reversible, showing that the effect is not due to volatilisation losses of Pu. However, it is difficult to resist the idea that the decrease of the intensities of the absorption peaks due to Pu⁴⁺ must show the formation of a different Pu valence state, notably Pu^{3+} . Pu^{3+} (5f⁵) would be expected to give rise to a considerably higher density of transition in photon energy space than Pu⁴⁺ and it may be that this is the reason why peaks due to Pu³⁺ could not be clearly observed, especially as Pu³⁺ would likely have inversion symmetry so that only electron dipole allowed vibronic transitions would be possible (neglecting very weak magnetic dipole transitions). It is relevant that diffuse reflectance peaks due to Pu^{3+} in CaTiO₃ could not be clearly observed [19].

To further explore the reason of weaker absorption intensities upon reduction, DR spectra of the above two samples, in the UV-visible range, were also collected (shown in Fig. 7). The two spectra are similar in the UV-visible range except for slightly elevated absorption at $\sim 21\,600$ cm⁻¹ for the reduced sample.

Fig. 6. DR spectra (4000–12000 cm⁻¹) of $Pu_{0.03}Th_{0.97}O_2$ sample, (a) sintered in air, (b) reheated in 3% H_2/N_2 at 1400 °C for 16 h.

Fig. 7. DR spectra $(12000-24000\ cm^{-1})$ of $Pu_{0.03}Th_{0.97}O_2$ sample, (a) sintered in air, (b) reheated in 3% H_2/N_2 at 1400 °C for 16 h.

4. Conclusion

We have confirmed by using diffuse reflectance spectroscopy that both Np and Pu exist as tetravalent ions in diluted $(Np/Pu)_x Th_{1-x}O_2$ solid solutions fired in air, and the intensities of the f–f electronic transitions increase with increasing x to $x \le 0.03$. The f–f electronic transitions show no single-ion features when x = 1. There is no evidence of trivalent Np ions in the samples after being reheated in strongly reducing atmospheres, but there is indirect evidence of Pu^{3+} on such reheating.

Acknowledgements

We thank T. McLeod for assistance with sample preparation and X-ray diffraction, and R.A. Day for the scanning electron microscopy.

References

- [1] W.C. Waggener, J. Phys. Chem. 62 (1958) 382.
- [2] J.C. Krupa, Inorg. Chim. Acta 139 (1987) 223.
- [3] J.C. Krupa, W.T. Carnall, J. Chem. Phys. 99 (11) (1993) 8577.
- [4] K.K. Sharma, J.O. Artman, J. Chem. Phys. 50 (1969) 1241.
- [5] I. Poirot, W. Kot, G. Shalimoff, N. Edelstein, M.M. Abraham, C.B. Finch, L. Boatner, Phys. Rev. B 37 (1988) 3255.
- [6] E.R. Menzel, J.B. Gruber, J. Chem. Phys. 54 (1971) 3857.
- [7] E.R. Menzel, J.B. Gruber, J.L. Ryan, J. Chem. Phys. 57 (1972) 4287.
 [8] W.T. Carnall, G.K. Liu, C.W. Williams, M.F. Reid, J. Chem. Phys.
- 95 (10) (1991) 7194.
- [9] J.B. Gruber, E.R. Menzel, J. Chem. Phys. 50 (9) (1969) 3772.
- [10] M.P. Lahalle, J.C. Krupa, R. Guillaumont, C. Rizzoni, J. Less-Common Met. 122 (1986) 65.
- [11] D.J. Cohen, Inorg. Nucl. Chem. 18 (1961) 211.
- [12] W.T. Carnall, H.M. Crosswhite, Optical Spectra of Actinide Ions in Compounds and Solutions, Argonne National Laboratory Report, ANL-84-90, 1985.
- [13] J. Drozdzynski, K. Schwochau, H.J. Schenk, J. Inorg. Nucl. Chem. 43 (1981) 1845.
- [14] E.R. Vance, Y. Zhang, J. Nucl. Mater. 357 (2006) 77.
- [15] W.W. Wendlandt, H.G. Hecht, Reflectance Spectroscopy, Wiley Interscience, New York, 1966.
- [16] E.R. Vance, J. Phys. C: Solid State Phys. 7 (1974) L185.
- [17] H.J. Schenk, E.W. Bohres, K. Schwochau, J. Inorg. Nucl. Chem. 37 (1975) 2491.
- [18] S.D. Conradson, B.D. Begg, D.L. Clark, C. den Auwer, M. Ding, P.K. Dorhout, F.J. Espinosa-Faller, P.L. Gordon, R.G. Haire, N.J. Hess, R.F. Hess, D. Webster-Keogh, G.H. Lander, D. Manara, L. Morales, M.P. Neu, S. Paviet-Hartmann, J. Rebizant, V.V. Rondinella, W.H. Runde, C.D. Tait, K. Veirs, P.M. Villela, F. Wastin, J. Solid State Chem. 178 (2005) 521.
- [19] B.D. Begg, E.R. Vance, S.D. Conradson, J. Alloy. Compd. 271–273 (1998) 221.